SIDDHARTH INSTITUTE OF ENGINEERING &TECHNOLOGY:: PUTTUR ELECTRONICS & COMMUNICATON ENGINEERING DIGITAL SIGNAL PROCESSING (16EC422) <u>QUESTION BANK</u>

UNIT-I

Introduction

init outcom	
 1 a). Determine the linear convolution for the two sequences x(n)={3,2,1,2},h(n)= {1,2,1,2} b). Explain the power signal and Energy signal 	[L1][CO1][7M] [L2][CO1][5M]
2) Find the forced response of the system described by the difference equation:	
2) I had the foreed response of the system described by the unreferee equation.	[L2][CO1][12M]
$y(n)+2y(n-1)+y(n-2)=x(n)+x(n-1)$ for input $x(n)=(-1)^{n}u(n)$	[][• • -][]
3 a). Find impulse response of the system described by the difference equation	[L2][CO1][6M]
y(n)+y(n-1)-2y(n-2)=x(n-1)+2x(n-2).	
b). Find 4-point DFT of the sequence $x(n) = \{1, 6, 4, 3\}$	[L2][CO1][6M]
() State and move following momenties of DET	
4) State and prove following properties of DFT	[L3][CO1][12M]
i) Linearity ii) Circular time shifting iii) Circular frequency shifting iv) Time reversal v) Com	plex conjugate.
5 a). Determine the circular convolution for the two sequences $x_1(n) = \{1, 2, 3, 4\}, x_2(n) = \{1, 5, 1, 3\}$	using concentric
circles method.	[L1][CO1][7M]
b). Explain the classification of discrete-time signals	[L2][CO1][5M]
6 a). Find the natural response of the system described by the difference equation:	
y(n)+2y(n-1)+y(n-2)=x(n)+x(n-1) with initial conditions $y(-1)=y(-2)=1$.	[L3][CO1][8M]
b) Justify how DFT can used as a linear Transform.	[L1][CO1][4M]
7) Find the output $y(n)$ of a filter whose impulse response is $h(n)=[1,-1]$ and input $x(n)=[1,-2,2,-1]$	1.2 1.4 21 using
	-
i) overlap add method ii) overlap-save method	[L1][CO1][12M]
8) For each of the following systems, determine whether or not the system is static/dynamic, 1	inear/non-linear, time
variant/invariant, causal/non-causal, stable/unstable.	[L1][CO1][12M]
i) $y(n)=cos[x(n)]$ ii) $y(n)=x(-n+2)$	
0a) Evalain fragmanay analysis of dispersta time systems	
9a). Explain frequency analysis of discrete-time systems.	[L2][CO1][6M]
b). Determine magnitude and phase response for the system described by the difference equation:	
$y(n) = \frac{1}{2}x(n) + x(n-1) + \frac{1}{2}x(n-2)$	[L3][CO1][6M]
10a). Find 8 point DFT of the sequence $x(n)=[1,2,1,0,2,3,0,1]$	[L1][CO1][7M]
b). Describe the relation between i) DFT to Z- transform ii) DFT to Fourier Series.	[L1][CO1][5M]

UNIT-II

Fast Fourier Transform Algorithm

1) Compute 8-point DFT of the sequence x(n)= {1,2,3,4,4,3,2,1} using radix-2 DIT-FFT Algorithm.[L1][CO2][12M]2a). Construct Radix-4 DIF FFT algorithm with neat sketch.[L2][CO2][7M]b). Compare DFT and FFT algorithms.[L4][CO2][5M]

3) Compute 8-point DFT of the sequence $x(n) = \{1, 2, 1, 2, 1, 2, 2, 1\}$ using radix-2 DIF-FFT Algorithm.[L2][CO2][12M]

4 a). Construct the decimation in time FFT algorithm with butterfly diagram.b). Explain use of FFT in linear filtering and correlation.	[L2][CO2][7M] [L1][CO2][5M]
5 a). Explain decimation in frequency FFT algorithm.b). Compare radix-2 DIT-FFT and DIF-FFT algorithms.	[L1][CO2][7M] [L4][CO2][5M]
6) Compute IDFT of the sequence x(n)= { 7,-0.707-j0.707,-j, 0.707-j0.707,1, 0.707+j0.707,j, -0.707+j0.707}.	[L2][CO2][12M]
 7) Formulate the DFT by divide and conquer approach 8) How do you compute DFT using a) The Goertzel Algorithm b) The chrip-z Transform 	[L1][CO2][12M] [L1][CO2][12M]
9 a). Explain Radix-4 FFT algorithm in decimation in time domain.b). Describe Quantization errors in the direct computation of DFT.	[L2][CO2][7M] [L1][CO2][5M]
10 a). With a neat sketch find 4 point DFT of the sequence $x(n)=[1,6,7,4]$ using radix2 DIT-FFT algorithm.	
b). Interpret the applications of FFT algorithm.	[L3][CO2][8M] [L1][CO2][4M]

UNIT-III

Implementation of Discrete-Time Systems

1 (a). Discuss frequency sampling structure for FIR filter.	[L1][CO3][6M]
(b). Realize FIR filter with system function in cascade form	[L3][CO3][6M]
H (z) = 1 + $\frac{5}{2}z^{-1}+2z^{-2}+2z^{-3}$	
2.Consider the system $y(n) = y(n - 1) + 2y(n - 2) + x(n) + 3x(n-1)$ (i) Find H(z) (ii) Realize using form-II.	direct form-I and direct [L1][CO3][12M]
3 (a). Obtain direct form-I,direct form-II,cascade,parallel form realization of following system: y(n) = 0.75y(n-1)-0.125y(n-2)+3x(n)+7x(n-1)+x(n-2)	[L2][CO3][12M]

4. A system is represented by a transfer function H(Z) =3+ $\frac{4Z}{Z - \frac{1}{2}} - \frac{2}{Z - \frac{1}{4}}$ [L3][CO3][12M]	4. A system is represented by a transfer function H(Z) = 3+ $\frac{4Z}{Z - \frac{1}{2}} - \frac{2}{Z - \frac{1}{4}}$	[L3][CO3][12M]
--	--	----------------

i) Does this system function H(Z) represent FIR or IIR.Justify?

ii) Give a difference equation for direct form-I structure.

iii) Draw the block diagram for direct form-II and give equations for implementation.

- 5 (a). Differentiate the different structures for IIR systems [L1][CO3][5M] (b) Realize following system with difference equation in cascade form [L2][CO3][7M] y(n) = y(n - 1) + 2y(n - 2) + x(n) - x(n-1)
- 6 (a). Explain lattice & lattice-ladder structure for IIR digital filter. (b). Discuss transposed structures.

7. The transfer function of a discrete causal system is given as H(Z)= $\frac{1-Z^{-1}}{1-0.2Z^{-1}-0.15Z^{-2}}$

i) Find difference equation ii) Draw cascade & parallel realizations

iii)Calculate impulse response of the system.

[L2][CO3][6M]

[L1][CO3][6M]

[L1][CO3][12M]

 8. Realize system with following difference equation y(n) = (3/4) y(n-1) - (1/8) y(n-2) + x(n) + (1/3) x(n-1). a) Cascade form b) Parallel form 	[L3][CO3][12M]
9. a). Illustrate the realization of the IIR filter in cascade form	[L1][CO3][6M]
(b). Explain representation of structures using signal flow graphs.	[L2][CO3][6M]
10(a). Explain conversion from lattice structure to direct form.	[L2][CO3][6M]
(b). Determine the direct form realization of FIR with system function	[L1][CO3][6M]
$H(Z) = 1 + 2Z^{-1} - 3Z^{-2} - 4Z^{-3} + 5Z^{-4}$	

UNIT –IV

Design of IIR Filters

1. (a). The analog transfer function $H(s) = 2/(s+1)(s+2)$ Determine $H(z)$ using impulse invariance method	
(b) Compare FIR and IIR filters.	[L1][CO4][7M] [L4][CO4][5M]
2. (a) Explain the features of Chebyshev approximation.(b) Discuss the location of poles for Chebyshev filter.	[L2][CO4][6M] [L1][CO4][6M]
 3. (a) Discuss the characterization of IIR filter. (b) Given specifications αp=1 dB; αs= 30dB; Ωp= 200rad/sec; Ωs=600 rad/sec. Determine the 	[L1][CO4][5M] e order the filter. [L2][CO4][7M]
 4. (a) Compare features of different windowing functions. (b) Determine the order and the pole of the low pass filter that has a 3-dB attenuation at 500 H of 40 dB at 1000 Hz. 5. Describe the IIR filter design approximation using Bilinear Transformation method. Also sketch the s-plane to z-plane mapping. State its merits and demerits. 	[L4][CO4][5M] Iz and an attenuation [L1][CO4][7M] [L2][CO4][12M]
6. Using the bilinear transform, design a high pass filter, monotonic in pass band with cut off free and down 10dB at 350 H. the sampling frequency is 5000Hz.	equency of 100Hz [L3][CO4][12M]
 7. a). Discuss the frequency selective filters with plot. b). Give the advantages and disadvantages of the digital filters 8.Design a Chebyshev filter for the following specifications using a) Bilinear transformation b) Impulse invariant method 0.8≤ H(e^{jw})≤1 0≤w≤0.2π H(e^{jw})≤0.2 0.6π≤w≤π 	[L1][CO4][6M] [L1][CO4][6M] [L3][CO4][12M]
9. Describe the frequency transformation in digital filters	[L1][CO4][12M]
10. a). Explain the frequency transformation in analog filtersb). Distinguish the Butterworth and Chebyshev filters	[L2][CO4][8M] [L4][CO4][4M]

<u>UNIT – V</u> Design of FIR Filters

1.Design an ideal HPF with desired frequency response $H_d(e^{jw})=1$, $\pi/4 \le w \le \pi$ 0, $ w \le \pi/4$ Find the values of h(n) for N=11 and also find H(Z) using Hanning window technique.	[L3][CO5][12M]
 2. a). Determine the frequency response of the FIR filter defined by y(n)= 0.25x(n)+ x(n-1) + 0.25x(n-2). b). Explain about the Rectangular window of the FIR filter. 	[L1][CO5][6M] [L2][CO5][6M]
3. Design a ideal band pass filter with a frequency response $H_d(e^{jw})=1$, $\pi/4 \le w \le 3\pi/4$ = 0 otherwise Find the values of $h(n)=11$ and plot frequency response	[L3][CO5][12M]
4 a) Design FIR filter using symmetric filter	[L2][C05][6M]
b) Design a linear phase FIR filter using frequency sampling method.	[L1][CO5][6M]
5. Design a filter with $H_d(e^{j\omega}) = e^{-j3\omega} -\pi/4 \le \omega \le \pi/4$	[L3][CO5][12M]
$= 0 \qquad \pi/4 \le \omega \le \pi$	
Using Hamming window with $N = 7$	
6. a) Discuss about characteristics linear phase FIR filtersb) Compare features of different windowing functions ?7.(a) Discuss about Asymmetric FIR filters.(b) What are the effects of windowing?	[L1][CO5][6M] [L4][CO5][6M] [L1][CO5][5M] [L1][CO5][7M]
 8. Design a FIR low pass filter satisfying the following specifications αp≤0.1 dB; αs≥44.0 dB; ωp= 20rad/sec;ωs=600 rad/sec and ωsf=100rad /sec. 9. A band pass FIR filter of length 7 is require. It is to have lower and upper cut off frequencie intended to be used with a sampling frequency of 24kHz. Determine the filter coefficients usin Consider the filter to be causal. 	
10. Illustrates the followingsa) Rectangular windowb) Hamming windowc) Hanning window	[L1][CO5][4M] [L1][CO5][4M] [L1][CO5][4M]